Clin/Regs Associates, Encinitas, CA 92024, USA.

Gold is possibly the most ancient and, in its recent incarnation as a delivery vehicle for gene therapy, one of the most modern agents in all of medicine's pharmacopoeia. Its administration to humans is both deliberate and inadvertent. It is universally recognized as the most inert of metals, yet it can be sensitizing. Gold’s broadest clinical application (in rheumatoid arthritis) derives from a premise that was totally flawed. It is employed clinically to effect immune suppression yet it can engender toxicities that stem from immunostimulation. To complete this series of paradoxes, the toxicity of gold, unlike that of most pharmaceuticals, is, in general, not predictably related to the levels it attains within bodily tissues. Accordingly, the pharmacology and toxicology of gold is remarkably complex. Recent laboratory discoveries concerning gold’s metabolism, have emphasized the important metabolic differences between its three oxidation states (0, I and III). When placed in the context of a wealth of clinical experience, these discoveries provide useful insights into its toxicology and shine a revealing light on the mechanisms which account for its seemingly paradoxical behaviour.

Zusammenfassende Übersetzung der Ergebnisse:
Obwohl Gold ein wenig reaktionsfähiges Material ist, kann es dennoch Sensibilisierungsreaktionen auslösen. Gold kann sowohl Immunreaktionen dämpfen (Rheuma-Therapie) als auch toxisch wirken über eine Immunstimulation. Gold-Reaktionen sind höchst widersprüchlich und sind abhängig von den Oxidationszuständen der Goldsalze (0, I und III).
Gibt es noch weitere Literatur zur **Toxizität von Gold**?

Björkner B: High frequency of contact allergy to gold sodium thiosulfate. An indication of gold allergy? Contact Dermatitis 30 (1994) 144-151

Möller H et al.: Flare-up at contact allergy sites in a gold-treated rheumatic patient. Acta Derm Venereol (Stockh) 76 (1996) 55-58

Rapson W: Skin contact with gold and gold alloys. Contact Dermatitis 13 (1997) 56—65

